

AFRL-IF-RS-TR-2004-220
Final Technical Report
July 2004

INFRASTRUCTURE OPERATIONS TOOL ACCESS
(IOTA)

Northrop Grumman Defense Mission

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2004-220 has been reviewed and is approved for publication

APPROVED: /s/

RICHARD J. LORETO
Project Engineer

 FOR THE DIRECTOR: /s/

JOSEPH CAMERA, Chief
Information & Intelligence Exploitation Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
JULY 2004

3. REPORT TYPE AND DATES COVERED
Final Mar 03 – Sep 03

4. TITLE AND SUBTITLE
INFRASTRUCTURE OPERATIONS TOOL ACCESS (IOTA)

6. AUTHOR(S)
Steve Barth and
James Muller

5. FUNDING NUMBERS
C - F30602-01-D-0167, 0015
PE - 63260F
PR - 2183
TA - QB
WU - 15

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Northrop Grumman Defense Mission
12005 Sunrise Valley Drive
Reston Virginia 20191-3404

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/IFEB
32 Brooks Road
Rome New York 13441-4114

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2004-220

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Richard Loreto/IFEB/(315) 330-3793/ Richard.Loreto@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The purpose of Infrastructure Operations Tools Access (IOTA) effort is to accomplish development of an advanced
architecture for ISR information management. The architecture will be based on a software component framework for
information dissemination. The component framework will be based on Web Services standards and include provisions
for enterprise workflow management. The component framework will leverage commercial off-the-shelf (COTS)
technology and government off-the-shelf (GOTS) applications to provide mechanisms for data discovery, dissemination
and visualization that can be rapidly adapted to varying information requirements. In particular, Java 2 Enterprise
Edition (J2EE), will be used to provide a platform-independent set of standards and tools for developing the component
framework. Broadsword Gatekeeper, a GOTS application, will also be used to define middleware capabilities for data
access and discovery.

15. NUMBER OF PAGES
11

14. SUBJECT TERMS
Middleware, Data Source Access, Infrastructure

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Table of Contents

Section Page

SECTION 1 Introduction ... 1
SECTION 2 Objectives .. 1

2.1 Information Discovery .. 1

2.2 Information Dissemination ... 1

2.3 Information Management ... 1
SECTION 3 Abbreviation / Symbol List... 1
SECTION 4 IOTA System Architecture ... 3

4.1 Data Discovery Middleware ... 3

4.2 Data Source Access .. 4
4.2.1 Procedure to Load a New Data Source .. 4
4.2.2 Future Procedure... 6
4.2.3 Transformation of Data.. 6

SECTION 5 Dependencies.. 7
SECTION 6 Summary and Conclusion.. 7

i

SECTION 1 INTRODUCTION
The purpose of Infrastructure Operations Tools Access (IOTA) effort is to accomplish
development of an advanced architecture for ISR information management. The architecture
will be based on a software component framework for information dissemination. The
component framework will be based on Web Services standards and include provisions for
enterprise workflow management.

The component framework will leverage commercial off-the-shelf (COTS) technology and
government off-the-shelf (GOTS) applications to provide mechanisms for data discovery,
dissemination and visualization that can be rapidly adapted to varying information requirements.
In particular, Java 2 Enterprise Edition (J2EE), will be used to provide a platform-independent
set of standards and tools for developing the component framework. Broadsword Gatekeeper, a
GOTS application, will also be used to define middleware capabilities for data access and
discovery.

The infrastructure’s development and deployment is a foundation for enterprise services for
information management. Specifically, to provide a data access framework and metadata to
production tools such as the Joint Targeting Toolkit (JTT) version 3.0, to provide Isaiah Phase 2
enhancements: automated cross-boundary data source access and integrated intelligence, and to
provide data source access infrastructure for JEFX 04 and DGS-X.

SECTION 2 OBJECTIVES

2.1 Information Discovery

Find out what information products are available

2.2 Information Dissemination

Generate information products in response to requests or subscriptions

2.3 Information Management

Provide interfaces for monitoring and controlling information flow, and provide tools for
generating, monitoring, and automatically satisfying information requirements (workflow
management)

SECTION 3 ABBREVIATION / SYMBOL LIST
Axis An Apache programming interface for building and utilizing SOAP-based Web

Services and provides a convenient mechanism for serializing arbitrary Java data
as XML and transforming it to other text formats.

EJB Enterprise Java Beans – J2EE network-based component framework. Provides
for distributed components as Java Beans.

 1

J2EE Java 2 Enterprise Edition – a set of standards for building Java based services.

JAX-RPC Java API for XML – based RPC – is a Java standard for expressing Java class data
as XML. This is used to encode Java objects so they can be passed via a SOAP
message.

JMS Java Messaging System – J2EE programming interface and architecture for
applications using message passing as an interface mechanism.

JCA Java Connection Architecture – a J2EE architecture for providing Java access to a
wide variety of data sources and their available metadata.

SOAP Simple Object Access Protocol – standardizes sending data in XML and is the
basis of most Web Services architectures.

UDDI Universal Description, Discovery and Integration protocol – directory service
standard that provides metadata describing available Web Services and the
mechanisms to access them.

WSDL Web Services Description Language – a standardized XML Interface Description
Language that describes the interaction with a data source in a message-based
language-neutral format. This is often used in conjunction with SOAP in a Web
Services architecture. Applications can use SOAP to obtain a WSDL description
and then follow the description to obtain information from the Web service.

WSIF Web Services Invocation Framework – an Apache Java API for implementing
WSDL interfaces. WSIF provides mechanisms that work with data sources that
can be accessed via SOAP and also using EJBs, JCA, JMS, or Java classes.

XML eXtensible Markup Language – a standardized markup language for adding
structured data to documents. XML is used to describe the information that a
community of interest needs to exchange.

XSLT eXtensible Style Language Transformations - provide a standardized XML syntax
for converting data from XML to different XML or non-XML text formats.

 2

SECTION 4 IOTA SYSTEM ARCHITECTURE

4.1 Data Discovery Middleware

The IOTA effort has leveraged the Broadsword Gatekeeper capability to pull data to various
display applications from multiple data sources through a common API. The components and
component framework developed for this effort, have maintained the existing Gatekeeper API to
support legacy Broadsword client applications, and provided for new API functionality using
Web Services and XML documents to deliver information objects. New API functionality will
include capabilities for publishing information to subscribing applications.

The infrastructure framework was developed in JAVA to be platform independent. Also, the use
of AXIS and WSIF provides the foundation. They provide the mechanism to present access to
multiple data source through a single view. Thus separating the user and applications from
requiring a set of data source specific knowledge to perform their tasks. AXIS and WSIF are free
and emerging as the standard web interface.

AXIS is a JAVA Web Services engine for processing SOAP messages. AXIS provides a server
that can be run with most JAVA based application servers, such as Tomcat, WebSphere, Web
Logic, Jboss, or EAServer. AXIS also has a flexible message processing chain and tools for
generating the required service implementations from JAVA classes or a WSDL interface
description and can use either HTTP or JMS for message transport. There is also a set of client
classes to establish a connection to a service and process the requests and responses.

 3

A SOAP message is received in AXIS by a handler class, whether the transport is HTTP, JMS,
or something else. The handler determines what service the message is directed to and calls the
correct provider class. The provider maps the method defined in the message to a JAVA method
defined for the service, which is then invoked. The provider then serializes the return data into an
XML SOAP response and sends it out through the output handler that, in turn, sends it to the
requesting client. IOTA works by adding a custom provider class, which can process compound
requests. The requests are converted into multiple back-end system calls, and the results returned
as a single integrated response message.

The Web Services Invocation Framework (WSIF) is a framework for providing interaction with
services through an abstract WSDL interface. Services can be simple JAVA classes, Enterprise
JAVA Beans, JAVA Message Service (JMS) providers, or JAVA Connection Architecture
components and WSIF can communicate with them using a common, message-based API. WSIF
uses special bindings in the WSDL interface descriptions to connect and interact with the
individual services. WSIF also has the capability of adding additional service types by extending
the WSDL bindings and WSIF provider classes. IOTA utilizes WSIF in the IOTA Provider class
in Axis to connect to the back-end data sources.

4.2 Data Source Access

The goal was to create a framework/infrastructure to provide access to any information source
available. An information resource could be, but is not limited to: relational databases, messages,
online documents, flat files, sensors, and imagery sources. Basically, any information that can be
programmatically accessed could be made available through IOTA. Access to 3m, IPL,
MIDB2.0, MDAL, and IET have all been successfully prototyped and demonstrated. One can
successfully load a new information data source, by following the procedural steps to load a new
data source.

4.2.1 Procedure to Load a New Data Source

1. Assumptions:
a. Axis or some web service has been successfully deployed with a successful

deployment of IOTA.
b. The new data source has a JAVA API with public methods to access a data

source with IOTAInputType and IOTAOutputType appropriately.
c. IOTAInputType: Originally developed based on the ICML metadata standard.

Can be extended to handle new required elements for a new data source. The
IOTAInputType includes all relevant information required to retrieve the
requesting data query.

d. IOTAOutputType: Originally developed based on the ICML metadata standard.
Can be extended to handle new required elements for a new data source. The
IOTAOutputType includes all relevant information returnable to the requesting
user or application.

2. JAVA API
a. The API must use the IOTAInputTypes and IOTAOutputTypes in the class

methods that will be used by IOTA to access the data source.

 4

3. Generate WSDL for the data source from the JAVA API.
a. Run the AXIS Java2WSDL application on the data source API classes to

generate a WSDL (XML) document for the data source (DataSource.WSDL).
Java2WSDL also generates files for a SOAP interface to access the API, which is
used later on in the Test Client. The API should be defined in terms of the
IOTAInputTypes and IOTAOutputTypes objects so that the requested data looks
like the ICML standard. Using ICML required work-arounds for generating the
WSDL document. (See 5.a.iii.2. below)

b. Edit the DataSource.WSDL document. Normally the WSDL document provides
the front-end definition for a Web service; however, while that's a desirable side
effect of this process for testing and applications with single data source access
requirements, the IOTA middleware needs to invoke the data source methods
inside its own code.

c. Modify specification for output types where substitutions were made to work
around serialization problems. That is, wherever IOTAOutputTypes should have
been used, but were avoided to allow Java2WSDL to work, they need to be put
back in place of the XML tags and schema that were generated.

d. For every SOAP binding, add a Java matching binding that will be used by IOTA
middleware to invoke the data source service.

4. Generate the Web Services deployment descriptor for data source access.
a. Run the WSDL2Java application on the DataSource.WSDL document completed

in Step iii. This application generates the file used by AXIS to describe Web
Services it handles. The descriptor file is an XML document named
"deploy.wsdd".

5. Edit the deploy.wsdd
a. Add a parameter naming the DataSource.WSDL file for the data source API

(created in Step iii). The file name must exist in the directories on the JAVA
CLASSPATH.

b. Change the Service and Service Port tags to use the Java bindings instead of the
SOAP bindings for the data source access methods. This involves pasting in the
same code used in Step 5.a.iii.2.b.

6. Compile the JAVA API and put the class files into a jar file (DataSource.jar)

7. Edit the IOTA.wsdd file
a. Provide access to the data source services for the IOTA middleware by

integrating the data source deploy.wsdd document with existing IOTA.wsdd.
Paste the Service tag definition from the data source deploy.wsdd document in to
the IOTA.wsdd document. All information on the deployed service is contained
in the structure of the Service tag. If one is not going to expose any methods of
the new data source, skip to deployment of IOTA (4.2.1.9).

8. Expose the data source services directly for testing.

 5

a. Add the SOAP bindings, from the DataSource.WSDL, for the data source
services to the existing IOTA.wsdl. The IOTA.wsdl file defines the front-end
IOTA services.

b. Update the AXIS config file by modifying the server_config.wsdd to add the
SOAP operation tags generated in the DataSource.WSDL.

c. Update the code used by AXIS to run the service by editing
IOTAEngineSOAPBindingImpl.java to add the method calls for the new
interface and re-compile it.

9. Re-deployment
a. Put the three files defining and implementing the service in the correct AXIS

directories (see AXIS administrator for appropriate location): the IOTA.wsdd
file, the DataSource.WSDL file generated in Step 2, and the jar file for the
generated Java classes to include the IOTA.jar and the DataSource.jar.

b. Stop and re-start AXIS. The IOTA.wsdd file is re-loaded and the new data source
services are available for testing.

c. Test the new data source services by using the Test Client Web page to define
service by filling out a form and submitting it. When the form is submitted, the
service is invoked and the XML document returned by AXIS is displayed as text
on a Web page. The XML document displayed is the serialized objects returned
from the data source service through AXIS. The XML document should include
specification of the ICML tags for the data elements. A client application could
then de-serialize the document to re-create the objects containing the data and
accessible through methods corresponding to the ICML tags themselves.

4.2.2 Future Procedure

As one can see, the current procedure has numerous manual steps for editing key files along the
way. It is our expectation to automate as many steps as possible.

4.2.3 Transformation of Data

Transformation includes the normalization of data and integrating the data for response.

4.2.3.1 Integrated Response

An integrated response is currently defined by concatenating data returned ICML normalized
data from multiple data sources that were accessed to support a request.

4.2.3.1.1 Future Integrated Response

In the future an integrated response would be defined by collecting, merging, organizing, or
processing data returned from multiple data sources that were accessed to support a request. The
XML document returned as an IOTAOutputType would be based on the nomenclature of the
requestor. In other words, the integration of the data would be based on the requestor
preferences.

 6

4.2.3.2 Normalization

Currently, the only normalization that occurs is within the JAVA APIs as data is returned from
the data source. The APIs populates an IOTAOutputType that is currently based on the ICML
format. This XML object is returned to the requestor as it is up to the requestor to parse the data
appropriately.

4.2.3.2.1 Future Normalization

Each data source, legacy application, program, and/or operational working environment has its
own nomenclature. For example, IPL queries on “Keyword”, the keyword in this case is a BE
Number, MIDB uses the term “Facility”, which has a reference to a BE Number. Other
applications use the term “Target ID” instead of a BE Number. However, in some targeting cells
a Target ID is a facility and in other targeting cells a target it is a DMPI. It would be impossible
given our current situation to get the whole DoD to use the same terms across the board.
Therefore, it behooves us to map each element to a common set of terms that IOTA can use and
understand to provide meaningful information to the requestor. In other words, normalize the
requesting data, process the request and returned data, and then translate the response to a
naming convention that the requestor understands. Therefore, it is incumbent on IOTA to
understand the nomenclature of the requestors and data sources.

4.2.3.2.2 Normalization of the Request

Translate the elements of the request based on the nomenclature of the requestor. Pass the
normalized request to the magic middleware where each appropriate data source would be
queried for information.

4.2.3.2.3 Responding with the Requestor Nomenclature

Translate the elements of the response based on the requestor nomenclature. Thus returning a
response that the requestor understands.

SECTION 5 DEPENDENCIES
Developing TTA functionality is dependent upon the ISSE Guard program. TTA requires
interfaces to the ISSE Guard application. No other dependencies have been identified.

SECTION 6 SUMMARY AND CONCLUSION
This report describes the progress achieved on IOTA development under this task. Follow-on
efforts are continuing to develop IOTA capabilities under the Intelligence Community
Engineering (ICE) Task Order contract.

 7

	Introduction
	Objectives
	Information Discovery
	Information Dissemination
	Information Management

	Abbreviation / Symbol List
	IOTA System Architecture
	Data Discovery Middleware
	Data Source Access
	Procedure to Load a New Data Source
	Future Procedure
	Transformation of Data
	Integrated Response
	Future Integrated Response

	Normalization
	Future Normalization
	Normalization of the Request
	Responding with the Requestor Nomenclature

	Dependencies
	Summary and Conclusion

